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Lecture 10 - “GPU Ray Tracing (2)”
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Previously in Advanced Graphics

GPU Architecture

void mainImage( out vec4 fragColor, in vec2 fragCoord )
{

vec2 uv = (fragCoord-.5*iResolution.xy)/iResolution.y;
uv.y += .355;
vec2 mouse = iMouse.xy/iResolution.xy;
uv *= .29;
vec3 col = vec3(0);
uv.x = abs(uv.x);
uv.y += tan(((5./6.)*3.1415))*.68;
vec2 n = N((5./6.)*3.1415);
float d = dot(uv-vec2(.5, 0), n);
uv -= n*max(0., d)*2.;
n = N((2./3.)*3.1415);
float scale = 1.;
uv.x += .5;
for(int i=0; i < 1; i++) {

uv *= 3.;
scale *= 3.;
uv.x -= 1.5;
uv.x = abs(uv.x);
uv.x -= 2.1;
uv -= n*min(0., dot(uv, n))*1.;

https://www.shadertoy.com/view/wdcBW2

https://www.shadertoy.com/view/wdcBW2
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Previously in Advanced Graphics

A Brief History of GPU Ray Tracing

2002: Purcell et al., multi-pass shaders with stencil, grid, low efficiency
2005: Foley & Sugerman, kD-tree, stack-less traversal with kdrestart
2007: Horn et al., kD-tree with short stack, single pass with flow control
2007: Popov et al., kD-tree with ropes
2007: Günther et al., BVH with packets.

▪ The use of BVHs allowed for complex scenes on the GPU (millions of triangles);
▪ CPU is now outperformed by the GPU;
▪ GPU compute potential is not realized;
▪ Aspects that affect efficiency are poorly understood.
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Understanding the Efficiency of Ray Traversal on GPUs*

Observations on BVH traversal:

Ray/scene intersection consists of an unpredictable sequence of node traversal and 
primitive intersection operations. This is a major cause of inefficiency on the GPU.

Random access of the scene leads to high bandwidth requirement of ray tracing.

BVH packet traversal as proposed by Gunther et al. should alleviate bandwidth strain 
and yield near-optimal performance.

Packet traversal doesn’t yield near-optimal performance. Why not?

*: Understanding the Efficiency of Ray Tracing on GPUs, Aila & Laine, 2009.
and: Understanding the Efficiency of Ray Tracing on GPUs – Kepler & Fermi addendum, 2012.
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Understanding the Efficiency of Ray Traversal on GPUs*

Why not?

What follows is a wonderful exposition of engineering details, 

featuring an ‘ideal GPU’ simulator and a series of simple traversal 

schemes – which leads to an unlikely culprit. Spoiler: bandwidth is 

not the problem.

Now go an read the paper. ☺
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Mapping Path Tracing to the GPU

The path tracing loop from lecture 8 is 
straight-forward to implement on the 
GPU.

However:

▪ Terminated paths become idling 
threads;

▪ A significant number of paths will 
not trace a shadow ray.

Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}
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Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}
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Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}
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Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}
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Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}
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Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}
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Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}



Wavefront

Advanced Graphics – GPU Ray Tracing (2) 32

Megakernels Considered Harmful*

Naïve path tracer:

*: Megakernels Considered Harmful: Wavefront Path Tracing on GPUs, Laine et al., 2013

KernelFunction

Generate
primary ray

Intersect

Shade

Trace 
shadow ray

Finalize

shadow?

terminate?

no

yes

Translating this to CUDA or OpenCL code 
yields a single kernel: individual functions 
are still compiled to one monolithic chunk 
of code.

Resource requirements (registers) - and 
thus parallel slack - are determined by 
‘weakest link’, i.e. the functional block that 
requires most registers.

Conditional code leads to idling threads 
that wait until others are done.no
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Megakernels Considered Harmful

Solution: split the kernel.

Example:

Kernel 1: Generate primary rays.
Kernel 2: Trace paths.
Kernel 3: Accumulate, gamma correct, convert to ARGB32.

Consequence:

Kernel 1 generates all  primary rays, and stores the result. 
Kernel 2 takes this buffer and operates on it.

➔Massive memory I/O.

KernelFunction

Generate
primary ray

Intersect

Shade

Trace 
shadow ray

Finalize

shadow?

terminate?

no

yes

no
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Megakernels Considered Harmful

Taking this further: streaming path tracing*.

Kernel 1: generate primary rays.
Kernel 2: extend.
Kernel 3: shade.
Kernel 4: connect.
Kernel 5: finalize.

Here, kernel 2 traces a set of rays to find the next path vertex 
(the random walk).
Kernel 3 processes the results and generates new path segments 
and shadow rays (2 separate buffers).
Kernel 4 traces the shadow ray buffer.
Kernel 1, 2, 3 and 4 are executed in a loop until no rays remain.

*: Improving SIMD Efficiency for Parallel Monte Carlo Light Transport on the GPU, van Antwerpen, 2011

KernelFunction

Generate
primary ray

Intersect

Shade

Trace 
shadow ray

Finalize

shadow?

terminate?

no

yes

no
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Megakernels Considered Harmful

Zooming in:

The generate kernel produces 𝑁 primary rays:

Buffer 1: path segments (𝑁 times O,D,t,primIdx)

The extend kernel traces extension rays and produces intersections*.
The shade kernel processes intersections, and produces new 
extension paths as well as shadow rays:

Buffer 2: generated path segments (𝑁 times O,D,t,primIdx)

Buffer 3: generated shadow rays (𝑁 times O,D,t, E,pixelIdx)

Finally, the connect kernel traces shadow rays.

generate

0, 1, … …, N-1

0, 1, … …, N-1

0, 1, … …, N-1

shade

connect

Note: here, the loop is 
implemented on the host. 
Each block is a separate 
kernel invocation.

*: An intersection is at least 
the t value, plus a primitive 
identifier.
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Megakernels Considered Harmful

Generate:

for each screen pixel i
{

O,D = GenerateRayDirection(i)
rayBuffer[i] = Ray( O, D, infinity, -1 )

}

generate

shade

connect
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Megakernels Considered Harmful

Extend:

for each buffered ray r
{

O,D,dist = rayBuffer[i]
dist, primIdx = FindNearestIntersection( O, D, dist )
rayBuffer[i].dist = dist
rayBuffer[i].primIdx = primIdx

}

generate

shade

connect
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Megakernels Considered Harmful

Shade:

for each buffered ray r
{

O,D,dist,primIdx = rayBuffer[i]
I = IntersectionPoint( O, D, dist )
N = PrimNormal( primIdx, I )
if (NEE) {

si = atomicInc( shadowRayIdx )
shadowBuffer[si] = ShadowRay( … )

}
if (bounce) {

ei = atomicInc( extensionRayIdx )
newRayBuffer[ei] = ExtensionRay( … )

}
}

generate

shade

connect



extend

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 39

Megakernels Considered Harmful

Connect:

for each buffered shadowRay r
{

O,D,dist,E, pixelIdx = shadowBuffer[i]
if (!Occluded( O, D, dist ))
{

accumulator[pixelIdx] += E;
}

}

generate

shade

connect
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Megakernels Considered Harmful

Digest:

Streaming path tracing introduces seemingly costly operations:

▪ Repeated I/O to/from large buffers;
▪ A significant number of kernel invocations per frame;
▪ Communication with the host.

The Wavefront paper claims that this is beneficial for complex 
shaders. In practice, this also works for (very) simple shaders.

Also note that the megakernel paper (2013) presents an idea 
already presented by Dietger van Antwerpen (2011).
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Assignment 1: Build a framework

Assignment 2: Add an acceleration structure

Assignment 3: Freestyle.
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Freestyle

General idea: implement a somewhat recent paper (or part of it) 
from the field of computer graphics.

Scoring: 

▪ 6 for a correct implementation of an ‘easy’ paper
▪ 7.5 for a ‘medium’ one
▪ 9 for a ‘hard’ paper.

NOTE: if you tackle multiple papers, the grade will be based on the 
hardest one (no stacking), so feel free to focus on one problem.

The final point is for excellence, presentation and analysis and is 
strongly subjective (but open for discussion afterwards).
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Freestyle

Topics – part 1 – Acceleration Structures

▪ Expanding on assignment 2, implement the paper “Spatial Splits in Bounding Volume Hierarchies” by 
Stich at al. This yields a high-quality BVH, at the expense of construction time. Note: Proof that the 
resulting tree is of a high quality is required. Difficulty: medium/hard.

▪ Or, go the opposite route: implement the paper “Bonsai: Rapid Bounding Volume Hierarchy Generation 
using Mini Trees” by Ganestam et al., which maximizes build performance. Note: build performance 
must be roughly in line with the numbers in the paper. Difficulty: medium/hard.

▪ Starting from a TLAS/BLAS builder from the tutorial series, add ‘partial rebraiding’, based on the 
paper “Improved two-level BVHs using partial re-braiding” by Benthin et al. Prove that the resulting 
TLAS/BLAS performs in line with the findings in the paper. Difficulty: easy.

▪ Other options exist. There is a paper by NVIDIA that explains how to efficiently traverse a (CPU-built) 
8-wide BVH on the GPU for state-of-the-art #RTXoff performance (hard). There exist other heuristics 
than SAH; an implementation and an in-depth analysis may provide you with an interesting project 
(easy).

▪ Feel free to propose something interesting!
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Freestyle

Topics – part 2 – Physically-based Rendering

▪ Implement a basic but correct bidirectional path tracer, as described by Veach in his 
Ph.D. thesis (as well as in many other sources). Proof the correctness of your 
implementation by comparing energy levels. Warning: hard. 

▪ Implement photon mapping, as described by Henrik Wann Jensen (“Global Illumination 
using Photon Maps”, 1996). Your implementation should correctly handle caustics. Verify 
your result against ground truth produced by a path tracer. Warning: must produce 
correct energy levels. Difficulty: easy – medium.

▪ Implement a basic but correct volumetric path tracer for non-homogeneous media, e.g. a 
cloud. Provide a test scene that clearly demonstrates the functionality. Difficulty: 
medium.

▪ Other options: feel free to propose something interesting.
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Freestyle

Topics – part 3 – Filtering & Reprojection

▪ Implement a filter that combines reprojection and spatial filtering to improve image 
quality. Suggestion: use a simple scene to make reprojection worthwhile. Difficulty: easy.

▪ Implement Adaptive Sampling (see e.g. “A Survey of Adaptive Sampling in Realistic 
Image Synthesis”, M. Šik. Difficulty: easy.

▪ Add the “Open Path Guiding Library” to your existing renderer and report on the 
integration process. Difficulty: easy, I think.

▪ Implement a recent paper on the topic of filtering (see 4).
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Freestyle

Topics – part 4 – Other Options

▪ “Path Guiding in Production”, by Vorba et al., 2019. Path guiding is a class of ‘learning 
algorithms’, which estimate importance of directions over the hemisphere based on 
earlier transport results. Difficulty: medium.

▪ “Direct Ray Tracing of Smoothed and Displacement Mapped Triangles”, Smits et al., 2000. 
The paper describes a method for directly rendering displacement maps in a ray tracer. 
The method is computationally expensive, which made it impractical in 2000. Now, in 
2020, things have changed. Difficulty: I think hard. (2023 update: yes, hard).

▪ “Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct 
lighting”, Bitterli et al., 2020. As discussed in the slides: a method for importance 
sampling thousands of lights. Difficulty: medium, but potentially a lot of work.

▪ Implement Wavefront Path Tracing on the GPU. Difficulty: medium, but rewarding.
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Upcoming Topics

Thursday: “Various”



MAGR – What’s Next

Advanced Graphics – GPU Ray Tracing (2) 54

Upcoming Topics

Next week: “Probability”
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Upcoming Topics

Next week: “Bidirectional”

= + + + +

= + + + +

t = 2 t = 3 t = 4 t = 5 t = 6

s = 2 s = 3 s = 4 s = 5 s = 6
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Upcoming Topics

Later: “ReSTIR”
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Upcoming Topics

Later: “Filtering”
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Upcoming Topics

Later: “Bit’s & Pieces”

+ 

EXAM 

PRACTICE
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END of “GPU Ray Tracing (2)”
next lecture: “Variance Reduction (2)”
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