
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2022 - February 2023

Lecture 10 - “GPU Ray Tracing (2)”

Welcome!

Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing

▪ Assignment 3 Kick-Off

▪ What’s Next

TL;DR version

STAR

Advanced Graphics – GPU Ray Tracing (2) 3

Previously in Advanced Graphics

GPU Architecture

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{

vec2 uv = (fragCoord-.5*iResolution.xy)/iResolution.y;
uv.y += .355;
vec2 mouse = iMouse.xy/iResolution.xy;
uv *= .29;
vec3 col = vec3(0);
uv.x = abs(uv.x);
uv.y += tan(((5./6.)*3.1415))*.68;
vec2 n = N((5./6.)*3.1415);
float d = dot(uv-vec2(.5, 0), n);
uv -= n*max(0., d)*2.;
n = N((2./3.)*3.1415);
float scale = 1.;
uv.x += .5;
for(int i=0; i < 1; i++) {

uv *= 3.;
scale *= 3.;
uv.x -= 1.5;
uv.x = abs(uv.x);
uv.x -= 2.1;
uv -= n*min(0., dot(uv, n))*1.;

https://www.shadertoy.com/view/wdcBW2

https://www.shadertoy.com/view/wdcBW2

STAR

Advanced Graphics – GPU Ray Tracing (2) 4

Previously in Advanced Graphics

A Brief History of GPU Ray Tracing

2002: Purcell et al., multi-pass shaders with stencil, grid, low efficiency
2005: Foley & Sugerman, kD-tree, stack-less traversal with kdrestart
2007: Horn et al., kD-tree with short stack, single pass with flow control
2007: Popov et al., kD-tree with ropes
2007: Günther et al., BVH with packets.

▪ The use of BVHs allowed for complex scenes on the GPU (millions of triangles);
▪ CPU is now outperformed by the GPU;
▪ GPU compute potential is not realized;
▪ Aspects that affect efficiency are poorly understood.

STAR

Advanced Graphics – GPU Ray Tracing (2) 5

Understanding the Efficiency of Ray Traversal on GPUs*

Observations on BVH traversal:

Ray/scene intersection consists of an unpredictable sequence of node traversal and
primitive intersection operations. This is a major cause of inefficiency on the GPU.

Random access of the scene leads to high bandwidth requirement of ray tracing.

BVH packet traversal as proposed by Gunther et al. should alleviate bandwidth strain
and yield near-optimal performance.

Packet traversal doesn’t yield near-optimal performance. Why not?

*: Understanding the Efficiency of Ray Tracing on GPUs, Aila & Laine, 2009.
and: Understanding the Efficiency of Ray Tracing on GPUs – Kepler & Fermi addendum, 2012.

STAR

Advanced Graphics – GPU Ray Tracing (2) 6

Understanding the Efficiency of Ray Traversal on GPUs*

Why not?

What follows is a wonderful exposition of engineering details,

featuring an ‘ideal GPU’ simulator and a series of simple traversal

schemes – which leads to an unlikely culprit. Spoiler: bandwidth is

not the problem.

Now go an read the paper. ☺

Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing

▪ Assignment 3 Kick-Off

▪ What’s Next

TL;DR version

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 25

Mapping Path Tracing to the GPU

The path tracing loop from lecture 8 is
straight-forward to implement on the
GPU.

However:

▪ Terminated paths become idling
threads;

▪ A significant number of paths will
not trace a shadow ray.

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 26

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 27

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 28

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 29

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 30

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 31

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 32

Megakernels Considered Harmful*

Naïve path tracer:

*: Megakernels Considered Harmful: Wavefront Path Tracing on GPUs, Laine et al., 2013

KernelFunction

Generate
primary ray

Intersect

Shade

Trace
shadow ray

Finalize

shadow?

terminate?

no

yes

Translating this to CUDA or OpenCL code
yields a single kernel: individual functions
are still compiled to one monolithic chunk
of code.

Resource requirements (registers) - and
thus parallel slack - are determined by
‘weakest link’, i.e. the functional block that
requires most registers.

Conditional code leads to idling threads
that wait until others are done.no

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 33

Megakernels Considered Harmful

Solution: split the kernel.

Example:

Kernel 1: Generate primary rays.
Kernel 2: Trace paths.
Kernel 3: Accumulate, gamma correct, convert to ARGB32.

Consequence:

Kernel 1 generates all primary rays, and stores the result.
Kernel 2 takes this buffer and operates on it.

➔Massive memory I/O.

KernelFunction

Generate
primary ray

Intersect

Shade

Trace
shadow ray

Finalize

shadow?

terminate?

no

yes

no

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 34

Megakernels Considered Harmful

Taking this further: streaming path tracing*.

Kernel 1: generate primary rays.
Kernel 2: extend.
Kernel 3: shade.
Kernel 4: connect.
Kernel 5: finalize.

Here, kernel 2 traces a set of rays to find the next path vertex
(the random walk).
Kernel 3 processes the results and generates new path segments
and shadow rays (2 separate buffers).
Kernel 4 traces the shadow ray buffer.
Kernel 1, 2, 3 and 4 are executed in a loop until no rays remain.

*: Improving SIMD Efficiency for Parallel Monte Carlo Light Transport on the GPU, van Antwerpen, 2011

KernelFunction

Generate
primary ray

Intersect

Shade

Trace
shadow ray

Finalize

shadow?

terminate?

no

yes

no

extend

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 35

Megakernels Considered Harmful

Zooming in:

The generate kernel produces 𝑁 primary rays:

Buffer 1: path segments (𝑁 times O,D,t,primIdx)

The extend kernel traces extension rays and produces intersections*.
The shade kernel processes intersections, and produces new
extension paths as well as shadow rays:

Buffer 2: generated path segments (𝑁 times O,D,t,primIdx)

Buffer 3: generated shadow rays (𝑁 times O,D,t, E,pixelIdx)

Finally, the connect kernel traces shadow rays.

generate

0, 1, … …, N-1

0, 1, … …, N-1

0, 1, … …, N-1

shade

connect

Note: here, the loop is
implemented on the host.
Each block is a separate
kernel invocation.

*: An intersection is at least
the t value, plus a primitive
identifier.

extend

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 36

Megakernels Considered Harmful

Generate:

for each screen pixel i
{

O,D = GenerateRayDirection(i)
rayBuffer[i] = Ray(O, D, infinity, -1)

}

generate

shade

connect

extend

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 37

Megakernels Considered Harmful

Extend:

for each buffered ray r
{

O,D,dist = rayBuffer[i]
dist, primIdx = FindNearestIntersection(O, D, dist)
rayBuffer[i].dist = dist
rayBuffer[i].primIdx = primIdx

}

generate

shade

connect

extend

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 38

Megakernels Considered Harmful

Shade:

for each buffered ray r
{

O,D,dist,primIdx = rayBuffer[i]
I = IntersectionPoint(O, D, dist)
N = PrimNormal(primIdx, I)
if (NEE) {

si = atomicInc(shadowRayIdx)
shadowBuffer[si] = ShadowRay(…)

}
if (bounce) {

ei = atomicInc(extensionRayIdx)
newRayBuffer[ei] = ExtensionRay(…)

}
}

generate

shade

connect

extend

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 39

Megakernels Considered Harmful

Connect:

for each buffered shadowRay r
{

O,D,dist,E, pixelIdx = shadowBuffer[i]
if (!Occluded(O, D, dist))
{

accumulator[pixelIdx] += E;
}

}

generate

shade

connect

Wavefront

Advanced Graphics – GPU Ray Tracing (2) 41

Megakernels Considered Harmful

Digest:

Streaming path tracing introduces seemingly costly operations:

▪ Repeated I/O to/from large buffers;
▪ A significant number of kernel invocations per frame;
▪ Communication with the host.

The Wavefront paper claims that this is beneficial for complex
shaders. In practice, this also works for (very) simple shaders.

Also note that the megakernel paper (2013) presents an idea
already presented by Dietger van Antwerpen (2011).

Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing

▪ Assignment 3 Kick-Off

▪ What’s Next

TL;DR version

Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing

▪ 2023 Update: SER

▪ Assignment 3 Kick-Off

▪ What’s Next

TL;DR version

Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing

▪ 2023 Update: SER

▪ Assignment 3 Kick-Off

▪ What’s Next

TL;DR version

Assignment 3

Advanced Graphics – GPU Ray Tracing (2) 46

Assignment 1: Build a framework

Assignment 2: Add an acceleration structure

Assignment 3: Freestyle.

Assignment 3

Advanced Graphics – GPU Ray Tracing (2) 47

Freestyle

General idea: implement a somewhat recent paper (or part of it)
from the field of computer graphics.

Scoring:

▪ 6 for a correct implementation of an ‘easy’ paper
▪ 7.5 for a ‘medium’ one
▪ 9 for a ‘hard’ paper.

NOTE: if you tackle multiple papers, the grade will be based on the
hardest one (no stacking), so feel free to focus on one problem.

The final point is for excellence, presentation and analysis and is
strongly subjective (but open for discussion afterwards).

Assignment 3

Advanced Graphics – GPU Ray Tracing (2) 48

Freestyle

Topics – part 1 – Acceleration Structures

▪ Expanding on assignment 2, implement the paper “Spatial Splits in Bounding Volume Hierarchies” by
Stich at al. This yields a high-quality BVH, at the expense of construction time. Note: Proof that the
resulting tree is of a high quality is required. Difficulty: medium/hard.

▪ Or, go the opposite route: implement the paper “Bonsai: Rapid Bounding Volume Hierarchy Generation
using Mini Trees” by Ganestam et al., which maximizes build performance. Note: build performance
must be roughly in line with the numbers in the paper. Difficulty: medium/hard.

▪ Starting from a TLAS/BLAS builder from the tutorial series, add ‘partial rebraiding’, based on the
paper “Improved two-level BVHs using partial re-braiding” by Benthin et al. Prove that the resulting
TLAS/BLAS performs in line with the findings in the paper. Difficulty: easy.

▪ Other options exist. There is a paper by NVIDIA that explains how to efficiently traverse a (CPU-built)
8-wide BVH on the GPU for state-of-the-art #RTXoff performance (hard). There exist other heuristics
than SAH; an implementation and an in-depth analysis may provide you with an interesting project
(easy).

▪ Feel free to propose something interesting!

Assignment 3

Advanced Graphics – GPU Ray Tracing (2) 49

Freestyle

Topics – part 2 – Physically-based Rendering

▪ Implement a basic but correct bidirectional path tracer, as described by Veach in his
Ph.D. thesis (as well as in many other sources). Proof the correctness of your
implementation by comparing energy levels. Warning: hard.

▪ Implement photon mapping, as described by Henrik Wann Jensen (“Global Illumination
using Photon Maps”, 1996). Your implementation should correctly handle caustics. Verify
your result against ground truth produced by a path tracer. Warning: must produce
correct energy levels. Difficulty: easy – medium.

▪ Implement a basic but correct volumetric path tracer for non-homogeneous media, e.g. a
cloud. Provide a test scene that clearly demonstrates the functionality. Difficulty:
medium.

▪ Other options: feel free to propose something interesting.

Assignment 3

Advanced Graphics – GPU Ray Tracing (2) 50

Freestyle

Topics – part 3 – Filtering & Reprojection

▪ Implement a filter that combines reprojection and spatial filtering to improve image
quality. Suggestion: use a simple scene to make reprojection worthwhile. Difficulty: easy.

▪ Implement Adaptive Sampling (see e.g. “A Survey of Adaptive Sampling in Realistic
Image Synthesis”, M. Šik. Difficulty: easy.

▪ Add the “Open Path Guiding Library” to your existing renderer and report on the
integration process. Difficulty: easy, I think.

▪ Implement a recent paper on the topic of filtering (see 4).

Assignment 3

Advanced Graphics – GPU Ray Tracing (2) 51

Freestyle

Topics – part 4 – Other Options

▪ “Path Guiding in Production”, by Vorba et al., 2019. Path guiding is a class of ‘learning
algorithms’, which estimate importance of directions over the hemisphere based on
earlier transport results. Difficulty: medium.

▪ “Direct Ray Tracing of Smoothed and Displacement Mapped Triangles”, Smits et al., 2000.
The paper describes a method for directly rendering displacement maps in a ray tracer.
The method is computationally expensive, which made it impractical in 2000. Now, in
2020, things have changed. Difficulty: I think hard. (2023 update: yes, hard).

▪ “Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct
lighting”, Bitterli et al., 2020. As discussed in the slides: a method for importance
sampling thousands of lights. Difficulty: medium, but potentially a lot of work.

▪ Implement Wavefront Path Tracing on the GPU. Difficulty: medium, but rewarding.

Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing

▪ 2023 Update: SER

▪ Assignment 3 Kick-Off

▪ What’s Next

TL;DR version

MAGR – What’s Next

Advanced Graphics – GPU Ray Tracing (2) 53

Upcoming Topics

Thursday: “Various”

MAGR – What’s Next

Advanced Graphics – GPU Ray Tracing (2) 54

Upcoming Topics

Next week: “Probability”

MAGR – What’s Next

Advanced Graphics – GPU Ray Tracing (2) 55

Upcoming Topics

Next week: “Bidirectional”

= + + + +

= + + + +

t = 2 t = 3 t = 4 t = 5 t = 6

s = 2 s = 3 s = 4 s = 5 s = 6

MAGR – What’s Next

Advanced Graphics – GPU Ray Tracing (2) 56

Upcoming Topics

Later: “ReSTIR”

MAGR – What’s Next

Advanced Graphics – GPU Ray Tracing (2) 57

Upcoming Topics

Later: “Filtering”

MAGR – What’s Next

Advanced Graphics – GPU Ray Tracing (2) 58

Upcoming Topics

Later: “Bit’s & Pieces”

+

EXAM

PRACTICE

Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing

▪ 2023 Update: SER

▪ Assignment 3 Kick-Off

▪ What’s Next

TL;DR version

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2022 - February 2023

END of “GPU Ray Tracing (2)”
next lecture: “Variance Reduction (2)”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

